organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,3-Diaminophenazine tetrahydrate

Xiao-Feng Li,* Yan An and Yan-Sheng Yin

Institute of Marine Materials and Engineering, Shanghai Maritime University, Shanghai 200135, People's Republic of China Correspondence e-mail: lxf_shmtu@yahoo.com.cn

Received 2 March 2008; accepted 7 April 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.048; wR factor = 0.140; data-to-parameter ratio = 7.1.

The title compound, $C_{12}H_{10}N_4 \cdot 4H_2O$, was obtained from a room-temperature solution of *o*-phenylenediamine and copper acetate. In the crystal structure, there are significant π - π stacking interactions, with a centroid–centroid separation of 3.575 (2) Å. In addition, intermolecular O–H···O, N–H···O, N–H···N and O–H···N hydrogen bonds link 2,3-diaminophenazine molecules and water molecules, forming a three-dimensional framework.

Related literature

For related literature, see: Brownstein & Enright (1995); Doyle *et al.* (2001); Chłopek *et al.* (2005).

 $4H_2O$

Crystal data

 $\begin{array}{l} C_{12}H_{10}N_4{\cdot}4H_2O\\ M_r = 282.30\\ Orthorhombic, \ Pca2_1\\ a = 16.7593\ (18)\ \text{\AA}\\ b = 18.1200\ (19)\ \text{\AA}\\ c = 4.7834\ (5)\ \text{\AA} \end{array}$

 $V = 1452.6 (3) Å^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.10 \text{ mm}^{-1}$ T = 293 (2) K $0.37 \times 0.32 \times 0.23 \text{ mm}$

Data collection

Bruker SMART APEX areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.965, T_{\rm max} = 0.977$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.140$ S = 1.141608 reflections 225 parameters 17 restraints 7735 measured reflections 1608 independent reflections 1432 reflections with $I > 2\sigma(I)$ $R_{int} = 0.022$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=0.29\ e\ {\rm \AA}^{-3}\\ &\Delta\rho_{min}=-0.12\ e\ {\rm \AA}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N4-H4 B ···O2 W^{i}	0.895 (10)	2.218 (12)	3.105 (5)	171 (3)
$N4 - H4C \cdot \cdot \cdot N4^{"}$	0.90 (3)	2.58 (3)	3.198 (3)	126 (3)
$N3-H3B\cdotsO1W^{m}$	0.906(10)	2.165 (16)	3.048 (6)	165 (4)
$N3-H3C\cdots N3^{n}$	0.895 (11)	2.33 (2)	3.122 (4)	147 (3)
$O4W-H4WA\cdots O4W^{v}$	0.855 (19)	2.017 (19)	2.871 (3)	176 (4)
$O4W - H4WB \cdots N2$	0.867 (17)	1.924 (19)	2.787 (3)	173 (4)
$O3W - H3WB \cdot \cdot \cdot N1$	0.872 (19)	1.96 (3)	2.801 (3)	161 (6)
$O2W - H2WA \cdots O4W^{v}$	0.84 (2)	2.01 (2)	2.843 (4)	178 (5)
$O1W - H1WA \cdots O1W^{vi}$	0.84 (6)	2.15 (6)	2.860 (7)	142 (6)
$O2W - H2WB \cdot \cdot \cdot O2W^{vii}$	0.87 (4)	1.97 (4)	2.812 (5)	161 (3)
$O1W-H1WB\cdots O3W$	0.85 (3)	2.09 (3)	2.882 (6)	155 (5)

Symmetry codes: (i) x, y, z - 1; (ii) $-x + \frac{1}{2}, y, z - \frac{1}{2}$; (iii) $-x + 1, -y + 1, z - \frac{1}{2}$; (iv) $-x + 1, -y, z - \frac{1}{2}$; (v) $-x + 1, -y, z + \frac{1}{2}$; (vi) $-x + \frac{3}{2}, y, z + \frac{1}{2}$; (vii) $-x + \frac{1}{2}, y, z + \frac{1}{2}$.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors thank the Program for Liaoning Excellent Talents in Universities for supporting this work (RC-05-11).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2601).

References

Brownstein, S. K. & Enright, G. D. (1995). Acta Cryst. C51, 1579-1581.

Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Chłopek, K., Bill, E., Weyhermüller, T. & Wieghardt, K. (2005). *Inorg. Chem.* 44, 7087–7098.

Doyle, R. P., Kruger, P. E., Mackie, P. R. & Nieuwenhuyzen, M. (2001). Acta Cryst. C57, 104–105.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

supplementary materials

Acta Cryst. (2008). E64, o1000 [doi:10.1107/S1600536808009598]

2,3-Diaminophenazine tetrahydrate

X.-F. Li, Y. An and Y.-S. Yin

Comment

The crystal structures of phenazinediamine (Doyle, *et al.*, 2001) and examples of its derivatives (Brownstein, *et al.*, 1995; Krzysztof, *et al.*, 2005) have been published. As part of our studies of these types of compounds we report here the crystal structure of the title compound (I) which was synthesized at room temperature using *o*-Phenylenediamine and copper acetate.

In compound (I), the asymmetric unit contains a 2,3-Diamino-phenazine molecule and four water molecules (Fig. 1). In the crystal structure, 2,3-Diamino-phenazine molecules related by unit cell translations along the *c* axis form moderately strong π ··· π stacking interactions (Cg1····Cg2(x, y, -1 + z) and Cg1···Cg3(x, y, 1 + z) = 3.575 (2) Å, where Cg1, Cg2 and Cg3 are the centroids defined by ring atoms N1/N2/C1/C6/C9/C10, C1—C6 and C7—C12, respectively). In addition, water molecules and 2,3-Diamino-phenazine molecules are linked by O—H···N, O—H···O, N—H···N and H—H···O hydrogen bonds to form a three-dimensional network (Table 1 & Fig.2).

Experimental

A mixture of *o*-Phenylenediamine(0.5 mmol, 0.054 g), $Cu(CH_3COO)_2$ (0.5 mmol,0.099 g), NaOH (1 mmol, 0.04 g), and water (10 ml) was placed in a 20 ml vial, stirring in air for 1 h. It was then sealed for 1 week and the resulting black block-shaped single crystals were collected. Yield: 67%. C&H analysis for $C_{12}H_{18}N_4O_4$ (found/calc): C, 51.03(51.06), H, 6.39(6.43).

Refinement

In the absence of significant anomalous dispersion effects the Friedel pairs were merged. The H atoms were placed in calculated positions in the riding-model approximation (C—H 0.93 Å, N—H 0.90 Å), with their temperature factors were set to 1.2 times those of the equivalent isotropic temperature factors of the parent atoms. The water H atoms were located in difference Fourier maps and refined isotropically with distance restrains of O—H = 0.85 (2) and H…H = 1.39 (1) Å.

Figures

Fig. 1. The asymmetric unit of (I).

Fig. 2. Part of the crystal structure viewed along the *c*-axis. Dashed lines are drawn between the donor and acceptor atoms of the hydrogen bonds but H atoms are not showm.

 $F_{000} = 600$

 $D_{\rm x} = 1.291 \text{ Mg m}^{-3}$ Mo *K* α radiation

Cell parameters from 3569 reflections

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 2.7 - 24.3^{\circ}$

 $\mu = 0.10 \text{ mm}^{-1}$

T = 293 (2) K

Block, black

 $0.37 \times 0.32 \times 0.23 \text{ mm}$

2,3-Diaminophenazine tetrahydrate

Cr	ysta	al d	ata	
C	тт	NT	411	

C₁₂H₁₀N₄·4H₂O $M_r = 282.30$ Orthorhombic, *Pca*2₁ Hall symbol: P 2c -2ac a = 16.7593 (18) Å b = 18.1200 (19) Å c = 4.7834 (5) Å V = 1452.6 (3) Å³ Z = 4

Data collection

Bruker SMART APEX area-detector diffractometer	1608 independent reflections
Radiation source: fine-focus sealed tube	1432 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.022$
T = 293(2) K	$\theta_{\text{max}} = 26.0^{\circ}$
φ and ω scans	$\theta_{\min} = 1.1^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -20 \rightarrow 18$
$T_{\min} = 0.965, \ T_{\max} = 0.977$	$k = -19 \rightarrow 22$
7735 measured reflections	$l = -5 \rightarrow 5$

Refinement

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w = 1/[\sigma^2(F_o^2) + (0.0963P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{max} = 0.29 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.12 \text{ e } \text{\AA}^{-3}$

Extinction correction: none

17 restraints Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N1	0.51508 (13)	0.31719 (12)	0.3965 (5)	0.0417 (6)
N2	0.51933 (12)	0.16406 (12)	0.2821 (6)	0.0410 (5)
C10	0.46946 (14)	0.20894 (15)	0.1460 (6)	0.0393 (6)
C11	0.41763 (15)	0.18021 (16)	-0.0623 (7)	0.0443 (7)
H11A	0.4184	0.1299	-0.1008	0.053*
C1	0.56542 (15)	0.27142 (16)	0.5338 (6)	0.0418 (7)
C12	0.36660 (15)	0.22488 (17)	-0.2076 (6)	0.0445 (7)
C8	0.41408 (16)	0.33188 (16)	0.0507 (7)	0.0456 (7)
H8A	0.4123	0.3823	0.0873	0.055*
С9	0.46739 (15)	0.28738 (15)	0.2042 (6)	0.0394 (6)
N4	0.31334 (15)	0.19700 (17)	-0.3960 (7)	0.0603 (8)
H4B	0.3134 (18)	0.1476 (6)	-0.403 (10)	0.072*
H4C	0.2916 (19)	0.2287 (16)	-0.520(7)	0.072*
N3	0.30987 (17)	0.34664 (19)	-0.2858 (6)	0.0630 (8)
H3B	0.315 (2)	0.3961 (7)	-0.263 (12)	0.076*
H3C	0.2912 (19)	0.333 (2)	-0.454 (4)	0.076*
C5	0.62032 (15)	0.14891 (17)	0.6301 (7)	0.0498 (7)
H5A	0.6222	0.0985	0.5942	0.060*
C6	0.56701 (14)	0.19474 (15)	0.4760 (6)	0.0401 (6)
C2	0.61674 (16)	0.30014 (19)	0.7428 (7)	0.0512 (8)
H2A	0.6163	0.3504	0.7828	0.061*
C7	0.36499 (15)	0.30342 (16)	-0.1501 (6)	0.0446 (7)
C4	0.66820 (16)	0.1785 (2)	0.8286 (7)	0.0561 (8)
H4A	0.7025	0.1480	0.9289	0.067*
C3	0.66680 (18)	0.25428 (18)	0.8851 (7)	0.0576 (9)
H3A	0.7004	0.2736	1.0213	0.069*
O4W	0.54392 (14)	0.01642 (12)	0.1437 (6)	0.0592 (6)
O3W	0.53446 (19)	0.47020 (15)	0.4439 (8)	0.0798 (8)
O2W	0.29410 (18)	0.02670 (19)	0.5763 (7)	0.0818 (8)
O1W	0.7032 (3)	0.4897 (3)	0.3542 (10)	0.1042 (11)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H4WB	0.541 (2)	0.0631 (11)	0.182 (8)	0.088 (14)*
H3WB	0.535 (3)	0.4238 (14)	0.396 (16)	0.16 (3)*
H4WA	0.516 (2)	0.0085 (18)	-0.004 (7)	0.070 (12)*
H3WA	0.4832 (14)	0.481 (2)	0.455 (16)	0.14 (2)*
H2WA	0.3416 (11)	0.014 (2)	0.601 (11)	0.102 (16)*
H1WA	0.723 (3)	0.469 (4)	0.495 (12)	0.22 (4)*
H2WB	0.266 (2)	0.016 (2)	0.724 (8)	0.093 (16)*
H1WB	0.6547 (14)	0.478 (2)	0.330 (13)	0.11 (2)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0396 (11)	0.0510 (12)	0.0344 (13)	-0.0021 (9)	0.0026 (10)	-0.0015 (11)
N2	0.0359 (11)	0.0526 (12)	0.0346 (12)	0.0009 (9)	0.0026 (11)	-0.0002 (11)
C10	0.0319 (12)	0.0550 (14)	0.0311 (14)	-0.0024 (10)	0.0056 (12)	0.0001 (12)
C11	0.0373 (13)	0.0571 (15)	0.0386 (15)	-0.0018 (12)	-0.0006 (13)	-0.0059 (13)
C1	0.0337 (13)	0.0606 (16)	0.0309 (15)	-0.0032 (11)	0.0033 (11)	0.0012 (12)
C12	0.0302 (13)	0.0741 (18)	0.0293 (14)	-0.0081 (12)	0.0057 (11)	-0.0011 (14)
C8	0.0444 (14)	0.0551 (14)	0.0375 (16)	0.0061 (12)	0.0035 (13)	0.0010 (13)
C9	0.0361 (12)	0.0509 (14)	0.0313 (16)	0.0018 (11)	0.0035 (11)	-0.0008 (12)
N4	0.0465 (14)	0.092 (2)	0.0428 (16)	-0.0086 (13)	-0.0108 (13)	-0.0011 (17)
N3	0.0539 (15)	0.089 (2)	0.0463 (17)	0.0191 (14)	-0.0071 (14)	0.0025 (15)
C5	0.0394 (13)	0.0697 (17)	0.0401 (17)	0.0079 (12)	0.0028 (13)	0.0071 (16)
C6	0.0303 (12)	0.0586 (15)	0.0315 (15)	-0.0004 (10)	0.0021 (12)	0.0022 (13)
C2	0.0423 (15)	0.0733 (18)	0.0379 (17)	-0.0112 (13)	0.0007 (13)	-0.0048 (16)
C7	0.0357 (13)	0.0699 (18)	0.0282 (15)	0.0063 (12)	0.0034 (12)	0.0024 (13)
C4	0.0358 (14)	0.090 (2)	0.0421 (18)	0.0057 (15)	-0.0020 (13)	0.0131 (17)
C3	0.0379 (15)	0.098 (3)	0.0366 (16)	-0.0096 (15)	-0.0058 (14)	0.0019 (17)
O4W	0.0671 (14)	0.0536 (12)	0.0569 (15)	0.0009 (10)	-0.0081 (13)	0.0014 (12)
O3W	0.103 (2)	0.0588 (14)	0.078 (2)	-0.0099 (13)	-0.003 (2)	-0.0042 (14)
O2W	0.0642 (17)	0.118 (2)	0.0636 (18)	0.0089 (16)	-0.0007 (16)	0.0027 (17)
O1W	0.097 (2)	0.123 (3)	0.092 (3)	-0.006 (2)	0.007 (2)	0.011 (2)

Geometric parameters (Å, °)

N1—C9	1.333 (3)	N3—H3B	0.906 (10)
N1—C1	1.353 (3)	N3—H3C	0.895 (11)
N2—C10	1.335 (3)	C5—C4	1.353 (5)
N2—C6	1.345 (4)	C5—C6	1.425 (4)
C10-C11	1.421 (4)	C5—H5A	0.9300
С10—С9	1.449 (4)	C2—C3	1.363 (4)
C11—C12	1.367 (4)	C2—H2A	0.9300
C11—H11A	0.9300	C4—C3	1.400 (4)
C1—C6	1.417 (4)	C4—H4A	0.9300
C1—C2	1.417 (4)	С3—НЗА	0.9300
C12—N4	1.366 (4)	O4W—H4WB	0.867 (17)
C12—C7	1.450 (4)	O4W—H4WA	0.855 (19)
С8—С7	1.366 (4)	O3W—H3WB	0.872 (19)
С8—С9	1.410 (4)	O3W—H3WA	0.883 (19)

C8—H8A	0.9300	O2W—H2WA	0.837 (19)
N4—H4B	0.895 (10)	O2W—H2WB	0.87 (4)
N4—H4C	0.90 (3)	O1W—H1WA	0.84 (6)
N3—C7	1.374 (4)	O1W—H1WB	0.849 (18)
C9—N1—C1	117.4 (2)	C7—N3—H3C	120 (3)
C10—N2—C6	117.2 (2)	H3B—N3—H3C	114 (4)
N2-C10-C11	120.1 (2)	C4—C5—C6	120.3 (3)
N2—C10—C9	121.2 (2)	C4—C5—H5A	119.9
C11—C10—C9	118.7 (2)	С6—С5—Н5А	119.9
C12—C11—C10	121.5 (3)	N2—C6—C1	121.9 (2)
C12—C11—H11A	119.3	N2—C6—C5	119.2 (3)
C10-C11-H11A	119.3	C1—C6—C5	118.8 (2)
N1—C1—C6	121.2 (2)	C3—C2—C1	120.1 (3)
N1—C1—C2	119.7 (3)	C3—C2—H2A	119.9
C6—C1—C2	119.1 (3)	C1—C2—H2A	119.9
N4—C12—C11	121.7 (3)	C8—C7—N3	121.5 (3)
N4—C12—C7	118.4 (3)	C8—C7—C12	119.5 (3)
C11—C12—C7	119.8 (3)	N3—C7—C12	118.9 (3)
C7—C8—C9	122.2 (3)	C5—C4—C3	120.9 (3)
С7—С8—Н8А	118.9	C5—C4—H4A	119.6
С9—С8—Н8А	118.9	C3—C4—H4A	119.6
N1—C9—C8	120.5 (3)	C2—C3—C4	120.8 (3)
N1—C9—C10	121.1 (2)	С2—С3—НЗА	119.6
C8—C9—C10	118.4 (2)	С4—С3—НЗА	119.6
C12—N4—H4B	113 (3)	H4WB—O4W—H4WA	108 (2)
C12—N4—H4C	118 (2)	H3WB—O3W—H3WA	105 (2)
H4B—N4—H4C	128 (4)	H2WA—O2W—H2WB	109 (2)
C7—N3—H3B	117 (3)	H1WA—O1W—H1WB	112 (3)
C6—N2—C10—C11	179.8 (2)	N1-C1-C6-N2	0.5 (4)
C6—N2—C10—C9	0.4 (4)	C2—C1—C6—N2	179.4 (3)
N2-C10-C11-C12	-179.2 (2)	N1—C1—C6—C5	-179.0 (3)
C9—C10—C11—C12	0.2 (4)	C2—C1—C6—C5	0.0 (4)
C9—N1—C1—C6	-0.3 (4)	C4—C5—C6—N2	-179.2 (3)
C9—N1—C1—C2	-179.2 (2)	C4—C5—C6—C1	0.2 (4)
C10-C11-C12-N4	-176.0 (3)	N1—C1—C2—C3	179.0 (3)
C10—C11—C12—C7	0.2 (4)	C6—C1—C2—C3	0.0 (4)
C1—N1—C9—C8	-179.3 (2)	C9—C8—C7—N3	175.9 (3)
C1—N1—C9—C10	0.2 (4)	C9—C8—C7—C12	0.6 (4)
C7—C8—C9—N1	179.2 (2)	N4—C12—C7—C8	175.8 (3)
C7—C8—C9—C10	-0.2 (4)	C11—C12—C7—C8	-0.6 (4)
N2-C10-C9-N1	-0.3 (3)	N4—C12—C7—N3	0.4 (4)
C11—C10—C9—N1	-179.6 (3)	C11—C12—C7—N3	-176.0 (3)
N2-C10-C9-C8	179.2 (3)	C6—C5—C4—C3	-0.5 (4)
C11—C10—C9—C8	-0.2 (3)	C1—C2—C3—C4	-0.3 (5)
C10—N2—C6—C1	-0.5 (4)	C5—C4—C3—C2	0.5 (5)
C10—N2—C6—C5	179.0 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A	
N4—H4B···O2W ⁱ	0.895 (10)	2.218 (12)	3.105 (5)	171 (3)	
N4—H4C…N4 ⁱⁱ	0.90 (3)	2.58 (3)	3.198 (3)	126 (3)	
N3—H3B…O1W ⁱⁱⁱ	0.906 (10)	2.165 (16)	3.048 (6)	165 (4)	
N3—H3C···N3 ⁱⁱ	0.895 (11)	2.33 (2)	3.122 (4)	147 (3)	
O4W—H4WA···O4W ^{iv}	0.855 (19)	2.017 (19)	2.871 (3)	176 (4)	
O4W—H4WB···N2	0.867 (17)	1.924 (19)	2.787 (3)	173 (4)	
O3W—H3WB…N1	0.872 (19)	1.96 (3)	2.801 (3)	161 (6)	
$O2W$ — $H2WA$ ··· $O4W^{v}$	0.84 (2)	2.01 (2)	2.843 (4)	178 (5)	
O1W—H1WA…O1W ^{vi}	0.84 (6)	2.15 (6)	2.860 (7)	142 (6)	
O2W—H2WB···O2W ^{vii}	0.87 (4)	1.97 (4)	2.812 (5)	161 (3)	
O1W—H1WB···O3W	0.85 (3)	2.09 (3)	2.882 (6)	155 (5)	
Symmetry codes: (i) <i>x</i> , <i>y</i> , <i>z</i> -1; (ii) - <i>x</i> +1/2, <i>y</i> , <i>z</i> -1/2; (iii) - <i>x</i> +1, - <i>y</i> +1, <i>z</i> -1/2; (iv) - <i>x</i> +1, - <i>y</i> , <i>z</i> -1/2; (v) - <i>x</i> +1, - <i>y</i> , <i>z</i> +1/2; (vi) - <i>x</i> +3/2, <i>y</i> , <i>z</i> +1/2; (vii) - <i>x</i> +1/2, <i>y</i> , <i>z</i> +1/2.					

